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Microtubules are fundamental to neuronal morphogenesis

and function. Mutations in tubulin, the major constituent

of microtubules, result in neuronal diseases. Here, we

have analysed b-tubulin mutations that cause neuronal

diseases and we have identified mutations that strongly

inhibit axonal transport of vesicles and mitochondria.

These mutations are in the H12 helix of b-tubulin

and change the negative charge on the surface of the

microtubule. This surface is the interface between micro-

tubules and kinesin superfamily motor proteins (KIF). The

binding of axonal transport KIFs to microtubules is domi-

nant negatively disrupted by these mutations, which alters

the localization of KIFs in neurons and inhibits axon

elongation in vivo. In humans, these mutations induce

broad neurological symptoms, such as loss of axons in the

central nervous system and peripheral neuropathy. Thus,

our data identified the critical region of b-tubulin required

for axonal transport and suggest a molecular mechanism

for human neuronal diseases caused by tubulin mutations.
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Introduction

The distinctive morphology of neurons is supported by the

specific microtubule networks that develop in neurons

(Hirokawa, 1982; Cleveland, 1987). Kinesin superfamily

proteins (KIFs) are microtubule-dependent molecular

motors that transport vesicular organelles in axons (Verhey

and Hammond, 2009; Hirokawa et al, 2010). Microtubules are

composed of a- and b-tubulin heterodimers (Mohri, 1968).

There are six major classes of b-tubulin in mammals. Three

classes of b-tubulin, Class I (TUBB1), Class II (TUBB2)

and Class III (TUBB3) are strongly expressed in neurons

(Sullivan and Cleveland, 1986; Cleveland, 1987; Joshi and

Cleveland, 1989). Of them, TUBB3 is a neuron-specific

isoform (Cleveland, 1987; Joshi and Cleveland, 1989).

As microtubules are fundamental to the morphology of

neurons, defects in tubulin genes are likely to cause

neuronal diseases (Jaglin et al, 2009; Poirier et al, 2010;

Tischfield et al, 2010). To date, mutations in b-tubulin genes

have been found to cause three different classes of neuronal

disease: polymicrogyria, congenital fibrosis of extraocular

muscle type 3 (CFEOM3) and malformation of cortical

development (MCD). In addition to the specific symptoms

of these conditions, the TUBB3 mutations, E410K, D417H and

D417N, induce very severe neurological symptoms, such as

peripheral neuropathy and loss of axons in many kinds of

brain neurons (Tischfield et al, 2010). Because microtubules

modulate the functions of a variety of proteins, such as

molecular motors and microtubule-associated proteins

(MAPs), it is speculated that b-tubulin mutations induce a

variety of symptoms. However, previous analyses have relied

on yeast cells expressing tubulin mutants or fibroblasts

derived from patients. As these studies have not performed

cell biological analysis in neurons, the molecular

mechanisms of these neuronal defects remain largely

elusive. In the present study, we identified b-tubulin

mutations that significantly inhibit KIF-mediated axonal

transport of vesicles and mitochondria through analysis of

b-tubulin mutations that induce neurological symptoms.

Furthermore, we found that these mutant tubulins inhibit

the binding of axonal transport KIFs to microtubules in a

dominant-negative fashion, and disrupt the localization of

KIFs in hippocampal neurons.

Results

Identification of b-tubulin mutations that affect vesicular

axonal transport

We tested whether axonal transport is affected by b-tubulin

mutations that cause three different neuronal diseases.

Fourteen b-tubulin mutants were tested: TUBB2(S172P),

TUBB2(I210T), TUBB2(L228P) and TUBB2(T312M), which

cause polymicrogyria; TUBB3(R62Q), TUBB3(R262C),

TUBB3(R380C), TUBB3(E410K) and TUBB3(D417H), which

cause CFEOM3; and TUBB3(G82R), TUBB3(T178M),

TUBB3(A302V), TUBB3(M323V) and TUBB3(M388V),

which cause MCD (Jaglin et al, 2009; Poirier et al, 2010;

Tischfield et al, 2010). These TUBB2 and TUBB3 mutants

were made by PCR-based mutagenesis and fused with a FLAG

tag. The TUBB2(S172P) and TUBB2(T312M) mutants were

cytoplasmic, and the TUBB2(L228P) mutant was partially

incorporated into microtubules. Wild-type TUBB2 and

TUBB3 and the other tubulin mutants were incorporated

into microtubules in cells (Supplementary Figure S1A),

consistent with previous studies (Jaglin et al, 2009; Poirier

et al, 2010; Tischfield et al, 2010). These mutations are

autosomal dominant (Poirier et al, 2010; Tischfield et al,

2010); therefore, we hypothesized that ectopic expression

should result in some physiological effects. Thus, these

tubulin mutants were co-transfected with axonal transport

markers into hippocampal neurons. When the improved
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Ca2þ -phosphate method was performed (Jiang and Chen,

2006), all green fluorescent protein (GFP)-positive neurons

were FLAG positive (Supplementary Figure S1B; 450 neu-

rons from five independent transfections for each tubulin

mutant were analysed).

In mature hippocampal neurons, VAMP2, an axonal plas-

ma membrane protein, is processed by the Golgi apparatus

and is directly sorted into axons; thus, it is widely used as a

marker for vesicular axonal transport (Song et al, 2009).

Indeed, GFP-VAMP2 specifically accumulated in axons when

hippocampal neurons at 10 days in vitro (div) were

co-transfected with WT-TUBB3 (Figure 1A left panel, and

Supplementary Movie S1). Strong signals were observed in

axons (Figure 1A, þWT, arrows), while signals in dendrites

were relatively weak (Figure 1A, þWT, arrowheads).

Among the 14 mutant b-tubulins screened in this study,

we found that two TUBB3 mutants, TUBB3(E410K) and

TUBB3(D417H), affected the axon-specific localization of
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Figure 1 Effect of tubulin mutants on the axonal transport of VAMP2. (A, B) GFP-VAMP2 vector was co-transfected with FLAG-tagged
b-tubulin mutant vectors into 10 div hippocampal neurons, and observed 24 h after transfection. (A) Cells were fixed and stained with anti-MAP2
antibody. Representative images of the localization of GFP-VAMP2 (green) and MAP2 (red) in TUBB3, TUBB3(E410K), TUBB3(D417H) and
TUBB3(R62Q) mutant-expressing neurons. Arrows and arrowheads indicate MAP2-negative axons and MAP2-positive dendrites, respectively. Bar,
20mm. (B) Representative images of the fluorescence recovery after photobleaching (FRAP) experiments. Images from TUBB3(R62Q)- and
TUBB3(E410K)-expressing neurons are shown. Circular areas were photobleached with an argon laser for 1 min to suppress the axonal signals,
and time-lapse observation was performed. Bars, 20mm. Graph shows the quantification of FRAP experiments in WT (Blue), R62Q (Red), E410K
(Green) and D417H (Purple). Data are presented as means±s.d. *Po0.01, t-test, compared with WT cells, n¼ 10. (C) YFP-Rab3A(Q81L), a
transported form of Rab3 fused with YFP, was co-transfected with b-tubulin mutants into hippocampal neurons at 10 div, and after 24 h, live-cell
imaging was conducted. The distance and the time scales represent 50mm and 100 s, respectively. Sixteen neurons from three independent
transfections were counted and are presented graphically. Data are presented as means±s.e.m. *Po0.01, t-test, compared with WT cells, n¼ 16.
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GFP-VAMP2 (Figure 1A; Supplementary Figure S1C). The

other mutants did not affect the localization of GFP-VAMP2.

In TUBB3(E410K)- and TUBB3(D417H)-expressing cells, the

amount of GFP-VAMP2 mis-sorted to dendrites (Figure 1A,

central panels, arrow heads) was increased and the polarized

localization of GFP-VAMP2 was diminished. Other TUBB3

mutants, such as TUBB3(R62Q), did not change the axon-

specific localization of GFP-VAMP2 (Figure 1A, right panel,

arrows). Furthermore, fluorescence recovery after photo-

bleaching analysis was performed to investigate any effect

on the dynamics of GFP-VAMP2 vesicles. Dynamic motility of

vesicle movement was observed in wild-type TUBB3- and

TUBB3(R62Q)-expressing cells but not in TUBB3(E410K)- and

TUBB3(D417H)-expressing cells. As a result, fluorescent

signals were not recovered in TUBB3 (E410K)- and

TUBB3(D417H)-expressing axons after 5 min observation

(Figure 1B; Supplementary Movies S1 and S2). Statistical

analysis using 10 observations supported these observations

(Figure 1B, graph). Next, we observed the axonal transport of

Rab3A, a synaptic vesicle-associated small GTPase. We have

shown that Rab3A is transported by KIF1A and KIF1Bb in the

GTP form. Rab3A with a Q81L mutation is able to mimic the

GTP form of Rab3A (Niwa et al, 2008). Thus, we used YFP-

Rab3A(Q81L) as a probe for the transported form of Rab3A to

monitor the axonal transport of Rab3A in mature

hippocampal neurons. Similar to the results for GFP-VAMP2

vesicles, the axonal transport of Rab3A was significantly

inhibited by co-transfection of TUBB3(E410K) and

TUBB3(D417H) mutants (Figure 1C; Supplementary Movie

S3). In contrast, co-expression of the other mutants had no

effect on the axonal transport of Rab3-carrying vesicles. The

number of vesicles anterogradely moving in axons was

counted. It was found that the number of Rab3-carrying

vesicles transported in axons was significantly reduced in

TUBB3(E410K)- and TUBB3(D417H)-expressing neurons but

not in TUBB3(R62Q)-, TUBB3(G82R)- and TUBB2(S172P)-

expressing neurons (Figure 1C, graph). Although we tried to

calculate other parameters such as run length, the number of

changes of direction and the average speed, only a very few

moving vesicles were observed in TUBB3(E410K)- and

TUBB3(D417H)-expressing neurons; thus, we could not ob-

serve a sufficient number of moving vesicles. These results

indicate that the axonal transport of vesicles is significantly

affected by TUBB3 E410K and D417H mutations but not by

the other mutations.

TUBB3(E410K) and TUBB3(D417H) mutants affect the

axonal transport of mitochondria in peripheral neurons

Interestingly, E410K and D417H mutations in the TUBB3 gene

cause peripheral neuropathies but other tubulin mutations do

not (Jaglin et al, 2009; Poirier et al, 2010; Tischfield et al,

2010). Several genetic studies have shown that defective

axonal transport and impaired mitochondrial functions are

causes of peripheral neuropathy (Delettre et al, 2000; Zhao

et al, 2001; Züchner et al, 2004; Rivière et al, 2011). Thus, we

tested the axonal transport of mitochondria in b-tubulin

mutant-expressing peripheral neurons using dorsal root

ganglion (DRG) neurons, a well-established model of

peripheral neurons. To observe the effect of tubulin

mutations on mitochondrial transport, a GFP variant fused

with a mitochondrial signal derived from cytochrome oxidase

IV (GFP-mit) (Llopis et al, 1998) was co-transfected with

b-tubulin mutants into DRG neurons using electroporation.

Three days after electroporation, DRG cells were observed by

time-lapse confocal microscopy. The number of mitochondria

moving in cells was significantly reduced in either

TUBB3(E410K)- or TUBB3(D417H)-expressing neurons,

compared with TUBB3(WT)-expressing neurons (Figure 2A;

Supplementary Movie S4). As is the case in vesicle motility

(Figure 1), the most obvious effect was reduction in number

of moving mitochondria; it was difficult to compare various

motility parameters such as run length and changes of

moving direction. To exclude a possibility that the expression

of GFP-mit affected the axonal transport of mitochondria, we

observed the localization of endogenous mitochondria

in these cells. For that purpose, wild-type TUBB3- and

TUBB3(D417H) mutant-expressing cells were stained with

MitoTracker red and fixed. The expression of wild-type

TUBB3 and TUBB3(D417H) was monitored by counterstain-

ing with anti-FLAG antibody. Consistent with the live-cell

imaging of mitochondrial transport, the number of mitochon-

dria in axons of TUBB3(D417H)-expressing cells was reduced

compared with that in control neurons (Figure 2B). Taken

together, these data suggest that axonal transport of

mitochondria was also affected by expression of the

TUBB3(E410K) and TUBB3(D417H) mutants.

Ectopic expression of TUBB3(E410K) and TUBB3(D417H)

mutants perturbs the binding of KIFs to microtubules

VAMP2 is transported by KIF5 (Song et al, 2009), and Rab3A

is transported by KIF1A and KIF1Bb (Niwa et al, 2008), while

mitochondria are cargos of KIF5 and KIF1Ba (Nangaku et al,

1994; Tanaka et al, 1998). We hypothesized that the defective

axonal transport of vesicles and mitochondria observed in

TUBB3(E410K)- and TUBB3(D417H)-expressing neurons was

caused by the inhibition of KIFs. To test this possibility, the

binding of KIFs to microtubules was analysed by a

microtubule co-sedimentation assay (Bulinski and Borisy,

1979). As a very high transfection efficiency is required for

this experiment, 293FT cells, which is sensitive to

transfection and can express high amount of proteins, were

used. Cells transfected with TUBB2 and TUBB3 mutants and

microtubules were then polymerized from transfected cell

lysates. Then, 5 mM adenosine 50-(b,g-imido) triphosphate

(AMP-PNP) and 10 mM taxol were added to lysates, and

microtubule and supernatant fractions were separated by

ultracentrifugation and analysed by western blotting. While

most endogenous KIF5 was bound to microtubules in control

cells in the presence of AMP-PNP, a significant amount of

KIF5 was detected in the cytoplasmic fraction in

TUBB3(E410K)- and TUBB3(D417H)-expressing cell lysates

(Figure 3A). The binding of dynein to microtubules was not

changed by tubulin mutants. We could not detect the binding

of endogenous KIF1Bb to microtubules even in the presence

of AMP-PNP (Figure 3B, upper panels). When brain lysate

was analysed by the same assay, similar results were

obtained. While endogenous KIF5 bound strongly to micro-

tubules in the presence of AMP-PNP, endogenous KIF1Bb did

not (Figure 3B, lower panels). The tail-inhibition mechanism

may affect the binding of KIF1Bb to microtubules under these

conditions (Verhey and Hammond, 2009). Hence, we assayed

tail-less KIFs that are free from tail inhibition and are

constitutively active (Huang and Banker, 2011). To this

end, the motor domains of KIF5(K560), KIF1A(C381),

Tubulin mutations that disrupt axonal transport
S Niwa et al

1354 The EMBO Journal VOL 32 | NO 10 | 2013 &2013 European Molecular Biology Organization



KIF1B(KIF1B470) and KIF21A(KIF21A420) were fused with

GFP, co-transfected with tubulin mutants and the binding

to microtubules in the presence of AMP-PNP was analysed

as described above. As a result, the amount of these motors

released from microtubule fractions was significantly

augmented by overexpression of TUBB3(E410K) and TUBB3

(D417H) (Figure 3C).

Expression of TUBB3(E410K) and TUBB3(D417H)

mutants alters the accumulation of KIFs in axonal tips of

hippocampal neurons

Previous studies have shown that GFP-K560 specifically

accumulates in axonal tips in developing and mature neurons

(Nakata and Hirokawa, 2003; Jacobson et al, 2006). There-

fore, to confirm that expression of TUBB3(E410K) and

TUBB3(D417H) changed the activity of KIFs in hippocampal

neurons, GFP-K560 was co-transfected with b-tubulin mutants

by the Ca2þ -phosphate method and its localization was

observed. TUBB3(E410K) and TUBB3(D417H) significantly

inhibited the axon-specific accumulation of GFP-K560, while

other tubulin mutants did not (Figure 4A). The GFP signal

became diffuse in TUBB3(E410K)- and TUBB3(D417H)-expres-

sing neurons. Furthermore, three additional KIFs, KIF1A,

KIF1B and KIF21A were tested. To this end, the motor domains

of GFP-C381, GFP-KIF1B470 and GFP-KIF21A420 were ob-

served. While GFP-KIF21A420 accumulated in axonal tips,

GFP-C381 and GFP-KIF1B470 accumulated in both axonal

and dendritic tips (Supplementary Figure S2). Similar to the

results for K560, the signals for these three motors became

diffuse when co-expressed in neurons with TUBB3(E410K) or

TUBB3(D417H) mutants, compared with control cells (Figures

4B and 5A). A mutation in the KIF21A motor domain (C28W)

has been reported to cause a neuronal disease, CFEOM1

(Yamada et al, 2003; Lu et al, 2008). In addition, we have

shown that a rigor mutation (T90N) perturbs motor activity

(Nakata and Hirokawa, 1995). We therefore expressed these

motor domain mutants in hippocampal neurons, and indeed,

these two mutations changed KIF21A accumulation in axonal

tips (Figure 5B). Taken together, these data suggest that

mutations of residues E410 and D417 in TUBB3 can broadly

change the property of KIFs in neurons and the localization

depends on the motor activity in cells.
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Figure 2 Effect of tubulin mutants on the axonal transport of mitochondria. (A) EGFP fused with the mitochondrial localization signal derived
from cytochrome oxidase IV (GFP-mit) was co-transfected with b-tubulin-mutant vectors into DRG neurons by electroporation and incubated
for 3 days, and live-cell imaging was performed. As examples, kymographs indicating the mitochondrial motility of wild-type TUBB3 and
TUBB3(D417H)-expressing neurons are shown. The distance and the time scales represent 50mm and 10 min, respectively. The graph shows the
results of quantification from wild-type TUBB3, TUBB3(R62Q)-, TUBB3(E410K)- and TUBB3(D417H)-mutant expressing cells. The number of
anterogradely moving mitochondria passing at a point in axons was counted for 5 min and plotted. Data are presented as means±s.d.
*Po0.01, t-test, compared with WT cells. Ten axons from ten neurons that were obtained from three independent transfections were counted.
(B) Mislocalization of mitochondria in TUBB3(D417H)-expressing DRG neurons. To observe mitochondria, cells were transfected with
FLAG-wild-type TUBB3 or FLAG-TUBB3(D417H) vectors, stained with MitoTracker red (Red), fixed and stained with anti-FLAG antibody
(Green). Representative images are shown. Bars, 50 mm. Graph shows the mitochondrial density in axons. The number of mitochondria in
axons was counted and shown as the number of mitochondria per 100mm. Data are presented as means±s.d. *Po0.01, t-test, compared with
WT cells. Ten axons from ten neurons that were obtained from three independent transfections were counted.
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The negative charge on the H12 helix is important for

axonal transport

E410 and D417 residues are in the H12 helix of TUBB3 and are

negatively charged (Figure 6A). The importance of the

negative charge on the H12 helix in axonal transport has

not been previously analysed. In TUBB3, E421 is also

negatively charged, while S413 is on the surface but is not

charged (Figure 6A, green and blue, respectively). Thus,

TUBB3(E421A) and TUBB3(S413R) were prepared in order

to change the negatively charged residue or to give an extra

positive charge on the H12 Helix. Furthermore,

TUBB3(E410D) and TUBB3(S413A) mutants that do not

have altered charges were also prepared as controls. First,

these mutant forms of b-tubulin were co-transfected with the

motor domain of different KIFs in hippocampal neurons

at 2 div and observed in stage 3 neurons. As anticipated,

the accumulation of GFP-hKIF21A420 was changed

by TUBB3(E421A) and TUBB3(S413R) mutants but not by

TUBB3(E410D) or TUBB3(S413A) mutants (Figure 6B). The

same results were obtained when GFP-K560, GFP-C381 and

GFP-KIF1B470 were investigated (Figure 6B, graph). Thus,

b-tubulin mutants that disrupted the surface charge of tubulin

changed the localization of GFP-K560, GFP-C381 and GFP-

KIF1B370, while b-tubulin mutants that conserved the charge

did not. To show that disruptive motor functions cause the

loss of axonal transport, the axonal transport of GFP-VAMP2

was observed in TUBB3(E421A)- and TUBB3(S413R)-

expressing neurons. These constructs were co-transfected

and observed as described above. As anticipated, expression

of these mutant forms of b-tubulin, TUBB3(E421A) and

TUBB3(S413R), significantly inhibited the axonal transport

of VAMP2-carrying vesicles (Figure 6C; Supplementary

Movie S5).

E410K and D417H mutations inhibit axonal transport

independent of the tubulin isoform

There are six major b-tubulin families in mammals

(Cleveland, 1987; Joshi and Cleveland, 1989). We asked

whether the effect of these mutations is TUBB3 specific

or is general to b-tubulins. To answer this question,

TUBB2(E410K), TUBB2(D417H), TUBB5(E410K) and

TUBB5(D417H) mutants were prepared, and their effects on

axonal transport of vesicles and the localization of KIFs were

observed. All the mutants were incorporated into

microtubules in COS-7 cells (Figure 7A). When co-expressed

in hippocampal neurons using the Ca2þ -phosphate method,

all four mutants changed the tip accumulation of GFP-K560

(Figure 7B). Notably, these residues are conserved between
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Figure 3 Effects of b-tubulin mutant overexpression on the binding of KIFs to microtubules. (A) TUBB2 and TUBB3 mutants were
overexpressed in 293FT cells; microtubules were assembled, incubated for 10 min in the presence of 10 mM taxol and 5 mM AMP-PNP and
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TUBB genes (Figure 7C). Next, the effect of these mutants

on axonal transport was observed. While expression of

TUBB2 and TUBB5 did not change the axonal transport of

GFP-VAMP2 vesicles, co-expression of TUBB2(E410K),

TUBB2(D417H), TUBB5(E410K) and TUBB5(D417H) signifi-

cantly inhibited transport (Figure 7D; Supplementary Movie

S6). Thus, the effects of E410K and D417H mutations are not

restricted to the TUBB3 gene.

Incorporation into microtubules is required to inhibit

axonal transport and axonal elongation

TUBB3(E410K) and TUBB3(D417H) mutations are autosomal

dominant. Our data indicate that ectopic expression of these

mutants can significantly inhibit axonal transport. As micro-

tubules are polymers composed of a- and b-tubulin dimers,

TUBB3(E410K) and TUBB3(D417H) mutants are likely

to inhibit axonal transport following incorporation into

microtubules. To test this, the S172P mutation was intro-

duced into the TUBB3(E410K) mutant because the S172P

mutation completely inhibits b-tubulin incorporation into

microtubules (Supplementary Figure S1; Jaglin et al, 2009).

While TUBB3(E410K) was incorporated into microtubules in

COS-7 cells, the double mutated tubulin, TUBB3(S172P,

E410K) was not (Figure 8A). First, the effect of these

mutants on the localization of GFP-K560 was observed. In

TUBB3(E410K)-expressing cells, axonal tip accumulation was
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Figure 4 Effects of b-tubulin mutations on the localization of several KIFs. (A) The effect of b-tubulin mutations on the localization of the KIF5
motor domain. GFP-K560 vector was co-transfected with FLAG-b-tubulin mutant vectors at 2 div and GFP signals were observed 24 h after
transfection. Representative images of the localization of GFP-K560 are shown. Arrows and asterisks, respectively, indicate axons and cell
bodies. Bars, 50 mm. Graphs indicate the statistical analysis. Quantification of tip accumulation of GFP-K560 is plotted on the bar graph.
Relative intensities were calculated using Equation (1) (Materials and methods). Data are presented as means±s.d. *Po0.01, Student’s t-test.
Fifteen neurons from three independent transfections were analysed. (B) Effect of b-tubulin mutations on the localization of KIF1A and KIF1B
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not observed (Figure 8B, central panel). However, the

localization of GFP-K560 in TUBB3(S172P, E410K)-expressing

cells was comparable to the localization in control cells

(Figure 8B, left panel). Statistical analysis from 20 cells

supported these results (Figure 8B, graph). Similarly, the

effect of the TUBB3(E410K) mutant on axonal transport of

VAMP2 vesicles was reversed by introducing the S172P

mutation (Figure 8C; Supplementary Movie S7). Finally, to

test the relevance of the cultured neuron data to in vivo

phenotypes, we performed in utero electroporation. WT and

mutant TUBB3 were electroporated into 14 day embryonic

(E14) mice and observed at postnatal day 1 (P1). When

TUBB3 was expressed, tips of axons were elongated and

reached the brain midline (Figure 9, TUBB3 WT). In contrast,

tips of axons did not reach the brain midline in

TUBB3(E410K) or TUBB3(D417H)-expressing brains

(Figure 9, TUBB3 D417H and E410K). To investigate whether

or not the incorporation into microtubules is required, the

additional S172P mutation, that disrupt the microtubule

incorporation, was added to TUBB3(D417H) mutant and the

effect was observed. Similarly to the results of cellular

experiments (Figure 8), TUBB3(S172P, D417H) did not inhibit

axon elongation. To show that disruption of KIFs induces

defects of axon elongation, knockdown experiments were

performed. An miRNA vector that inhibits the expression of

KIF1Bb (KIF1Bb-miRNA) was used (Niwa et al, 2008)

because it has been suggested that KIF1B is required for

axon development (Zhao et al, 2001). In KIF1Bb�miRNA
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asterisks indicate neurite tips and cell bodies, respectively. Note that co-transfection with E410K and D417H inhibited the tip accumulation of
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transfected brains, axon elongation was severely inhibited,

compared with that of control miRNA vector-transfected

brains.

Discussion

Identification of b-tubulin mutations that strongly

inhibit KIF-dependent axonal transport

Mutations in b-tubulin genes cause a broad range of neuro-

logical symptoms, such as fibrosis of extraocular muscles,

loss of axons in brain neurons, peripheral neuropathy,

polymicrogyria and MCD, depending on the causative

mutation (Jaglin et al, 2009; Poirier et al, 2010; Tischfield

et al, 2010). There are numerous examples where analysis of

hereditary diseases has given insight into the properties

of the genes responsible. Analyses of human hereditary

neurodegenerative diseases caused by tubulin mutations

may yield significant insights into the basic molecular

mechanisms of neuronal morphogenesis. Thus, it is thought

that analysis of the b-tubulin mutations that cause such

neuronal diseases will help the understanding of neuronal

morphogenesis. In this work, we have analysed the effects of
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transfections were analysed in each sample. Note that mutations disrupting the negative charges affect the accumulation of all KIFs, while
mutations conserving the charge do not. (C) GFP-VAMP2 and FLAG-b-tubulin-mutant vectors were co-transfected into hippocampal neurons
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*Po0.01, t-test, compared with WT cells. Ten neurons from three independent transfections were counted.
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these mutations in neurons by focusing on axonal transport,

which is fundamental to neuronal function and

morphogenesis (Hirokawa et al, 2010). Through analysing

the tubulin mutations that cause neuronal diseases, we found

that two mutations, E410K and D417H, perturb axonal

transport of vesicles and mitochondria in central and

peripheral nervous systems. In the live-cell imaging, the

most obvious effect of these mutants is that they reduce

the number of moving vesicles (Figures 1 and 2). It suggests

that loss of vesicle attachment is the main cause of loss of

transport. This is supported by the biochemical data showing

that the binding of KIFs is changed by these TUBB3 mutants

(Figure 3). Dynein was not affected in biochemical experi-

ments, probably because the binding mechanism is different

from KIFs. Nevertheless, retrograde transport was also

reduced by these mutant tubulins. It would be the secondary

effect of reduction in anterograde transport that supplies

cargos to the distal axons. Interestingly, among the b-tubulin

mutants that cause neuronal diseases, E410K and D417H

mutations share similar characteristics. They cause broad

and severe neurological symptoms, such as peripheral neuro-

pathy and loss of axons in the brain, while other b-tubulin

mutations cause relatively mild and more specific symptoms

(Jaglin et al, 2009; Poirier et al, 2010; Tischfield et al, 2010).

Both E410K and D417H mutations are in the H12 helix of

b-tubulin and both mutated residues are negatively charged,

suggesting that negative charges on H12 helix are important

for axonal transport. Consistent with this idea, the E421

residue, which is also in the H12 helix, is also required for

axonal transport (Figure 6). Furthermore, the S413R muta-

tion, which provides an extra positive charge to the H12

helix, also disrupted axonal transport (Figure 6). Previous

in vitro studies show that the H12 helix supports the motility

of KIF5 (Hoenger et al, 2000; Uchimura et al, 2006) and the

microtubule-binding domain of KIF5 is positively charged

(Woehlke et al, 1997). In this paper, we found that the H12
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helix was essential for the axonal tip accumulation of KIFs in

neurons (Figures 4–6) and ectopic expression of H12 mutants

leads to defective axonal transport and inhibited axon devel-

opment in vivo (Figure 9A–C). While previous studies have

analysed the effect of these mutations on mitotic kinesins in

yeast cells (Tischfield et al, 2010), our results would more

clearly and directly suggest the phenomena that cause

neuronal symptoms.

Insight into neuronal diseases

Although TUBB3 is a neuron-specific isoform of b-tubulin,

only about 20% of total b-tubulin in neuronal cells is TUBB3

(Joshi and Cleveland, 1989). TUBB3(E410K) and TUBB3

(D417H) mutants induce neuronal diseases in an autosomal

dominant manner, meaning that only 10% of mutant tubulin

can significantly induce neuronal phenotypes. How is this

small amount of mutated TUBB3 able to strongly affect

neurons? Because our assay used CMV and CAG promoters

and unknown copy numbers of transfected vectors, we could

not quantify the amount of tubulin incorporated into

microtubules in our system. Nevertheless, we think our

results give insights to this question. Microtubules are

composed of a- and b-tubulin dimers. The size of each

tubulin dimer is 8 nm (Nogales et al, 1999). Our analysis

showed that TUBB3(E410K) and TUBB3(D417H) were

incorporated into microtubules in cells and could inhibit

axonal transport (Supplementary Figure S1; Figure 8A). The

inhibition of motor domain accumulation, axonal transport

and axon development were not observed when the incor-

poration of mutant tubulin was perturbed by introducing the

additional S172P mutation (Figures 8 and 9). Thus, these

tubulin mutants need to be co-assembled with normal micro-

tubules to induce neuronal phenotypes. If the 10% mutant

TUBB3 is properly incorporated and evenly distributed in

neuronal microtubules in CFEOM3 patients, then the distance

between TUBB3 mutants is about 80 nm, meaning that

KIF-dependent axonal transport is affected every 80 nm

(Figure 9D). This distance is short enough to cause an effect

because the length of axonal transport is in the order of

millimeters to meters (Hirokawa et al, 2010). While we

hypothesized even distribution of TUBB3 mutant in this

model, for more quantitative and precise consideration, the
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developmental change of TUBB3 expression needs to be

gauged and it is required to quantify how much amount of

mutant tubulin is incorporated into microtubules. It would be

helpful to analyse neurons developed from inducible

pluripotent stem cells of patients (Abeliovich and Doege,

2009).

Many b-tubulin mutations that cause congenital neuronal

diseases have been identified. Depending on the causative

mutations, patients who have b-tubulin mutations suffer

from various neurological symptoms. In particular, patients

with E410K, D417H or D417N mutations suffer from various

neurological symptoms, such as loss of axons in the central

nervous system, fibrosis of extraocular muscles and periph-

eral neuropathy, while patients with other mutations do not

suffer from these symptoms (Tischfield et al, 2010). It has

been suggested that b-tubulin mutations that cause CFEOM3

inhibit the function of KIF21A, because KIF21A mutations

cause a similar neuronal disease, CFEOM1 (Yamada et al,

2003; Tischfield et al, 2010). However, our molecular cell

biological analysis of b-tubulin mutants showed that E410K

and D417H mutations affect the microtubule binding of

not only KIF21A but also of other axonal-transport KIFs

(Figure 3). In addition, E410K and D417H b-tubulin mutants

disrupt axonal transport of vesicles and mitochondria in cells

derived from the central and peripheral nervous systems

(Figures 1 and 2). It has been shown that Kif1a, Kif1b and

Kif5a mutant mice exhibit divergent neuronal phenotypes,

such as loss of axons and peripheral neuropathy-like

phenotypes (Yonekawa et al, 1998; Zhao et al, 2001; Xia

et al, 2003). Consistent with these previous studies, our
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in vivo knockdown of KIF1Bb induced axonal defects in the

brain, the phenotype of which is similar to phenotypes of

brains expressing TUBB3(E410K) and TUBB3(D417H)

(Figure 9). These phenotypes are similar to symptoms

observed in CFEOM3 patients who have TUBB3(E410K) and

TUBB3(D417H) mutations (Tischfield et al, 2010). In humans,

mutations in KIFs induce various neurological diseases (Reid

et al, 2002; Rivière et al, 2011; Klebe et al, 2012). Thus, we

suggest that the severe symptoms caused by E410K and

D417H mutations are because these mutations inhibit not

only the function of KIF21A, but also the function of a broad

range of axonal transport KIFs in neurons and probably

disrupt axonal transport. In contrast, our results show that

b-tubulin mutants causing mild CFEOM3 did not significantly

affect axonal transport or the localization of KIF21A in

cultured neurons (Figures 1–3 and 6). Moreover, the neuronal

localization of other KIFs was not affected (Figure 3). Thus,

this study has not resolved why other b-tubulin mutations,

such as TUBB3(R62Q), cause neuronal phenotypes. It is

possible that binding to MAPs and/or microtubule dynamics

are changed by these mutations; it has been shown that

CFEOM3 mutations change microtubule dynamics in yeast

(Tischfield et al, 2010). Further study is needed to fully

understand the relationship between mutated residues and

pathogenesis. A similar cell biological approach to the one we

have used, using a different probe such as MAPs or EB3

(Stepanova et al, 2003), may facilitate these studies.

Materials and methods
Detailed methods are described in Supplementary data.

Vectors
cDNAs for human KIF21A (KIAA1708) and human KIF1B
(KIAA1448) were obtained from the Kazusa DNA Instutute
(Chiba, Japan). Mouse TUBB3 (#2700078D11 and #7120476D15),
mouse TUBB2 (#6330407N09) and mouse TUBB5 (#I920080M12
and #I730041C01) were obtained from Fantom3 cDNA library
(RIKEN, Wako, Japan). C381-GFP and K560-GFP were previously
described (Nakata et al, 2011; Nakata and Hirokawa, 2003).

Cell culture, transfection and microscopy
Neurons, COS-7 and 293FT cells were cultured as described (Niwa
et al, 2008). A Ca2þ -phosphate transfection kit (TAKARA-Clontech,
Tokyo, Japan) was used to transfect hippocampal neurons as
described (Jiang and Chen, 2006). One microgram of plasmid
DNA was used for a single transfection. For co-transfection, 1mg
of GFP or yellow fluorescent protein (YFP) vector and 2 mg of FLAG-

b-tubulin mutants were used. Co-transfection was checked by
immunofluorescence microscopy for each new combination of
vectors. For DRG neurons and 293FT cells, electroporation was
conducted using a NEON transfection system as described in
manufacturer’s instructions (Invitrogen). In utero electroporation
was performed as described (Teng et al, 2005). For immunostaining,
anti-FLAG (Clone FLG-1; 1:2000 dilution; MBL, Tokyo, Japan), anti-
GFP polyclonal (#598; 1:5000 dilution; MBL), anti-tau (Clone tau-1;
1:1000 dilution; Sigma, St Louis, MI, USA) and anti-MAP2
antibodies (Clone HM2; 1:1000 dilution; Sigma) were used. For
live-cell imaging, cells were transfected with GFP-VAMP2 (Song
et al, 2009) and YFP-Rab3A(Q81L) (Niwa et al, 2008) as described
above. Cells were observed using a LSM710 system (Carl Zeiss,
Jena, Germany). For quantification, the pinhole was fully opened
and the brightest plane was used. Images were taken by 16-bit
mode. To calculate the accumulation of KIFs, the relative
fluorescence intensities (Rf) were calculated using the following
equation, where St, Ss and Sb represent the mean intensity of
fluorescence signal in growth cones, axons excluding growth
cones and in the background, respectively.

Rf¼ðSt� SbÞ=ðSs� SbÞ ð1Þ

Microtubule sedimentation
Microtubule binding assays were performed in 293FT cells and
brain as described (Bulinski and Borisy, 1979). Anti-Dynein
antibodies were described previously (Hirokawa et al, 1990).

Structural data
The tubulin structure was processed using UCSF Chimera obtained
from the UCSF server (http://www.cgl.ucsf.edu/chimera/). The
tubulin structure (Nogales et al, 1999) (PDB#1JFF) was obtained
from PDB (http://www.pdb.org/pdb/home/home.do).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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