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1.3.2.2 Lower Bound of Collection Capacity

The data collection algorithm based on branch scheduling in the BFS tree can still achieve the 

capacity of 
W
!∆ . However, in the general graph model, !∆  is no longer bounded by a constant, 

and it could be O(1) or O(n). Thus, there is a gap between our lower bound of data collection 
W
!∆

 
and the natural upper bound W. Considering both examples shown in Figure 1.12 of the article, 

the BFS tree-based method method matches their tight upper bounds 
W
n  and W. For the star 

topology, even though the sink has the maximal interference Δ = n, each individual path has the 
path interference Δi = 1, which leads to a capacity of W. For the straight-line topology, the path 

interference of the single path Δi = n, thus the capacity is 
W
n . In both cases, 

W
!∆

 matches the 
optimal capacity. However, similar to W

∆
, 

W
!∆

 is still not a tight bound. We will show such an 
example in Figure 1.14. In this subsection, we will provide two new tighter lower bounds for data 
collection in the general graph: one based on the branch scheduling method and the other based 
on a greedy scheduling method.

We first look at the branch scheduling–based method (Algorithm 1). We modify the basic 
path scheduling of the BFS tree-based method to achieve better collection capacity. Recall that 
in Section 1.3.1.2, we claim that the path scheduling for a path Pi can be done in Δi × |Pi| time 
slots. However, we can perform path scheduling in the following way to save more time slots. 
Assume that path P s v v vi Pi

= , , ,1 2 …  includes |Pi| hops. Let δ δ δk
P P P

k
i i iv v= { }max , ,( ) ( )1 … , that is, 

δP
k

i v( )  is the maximum interference number among the first k nodes v1 to vk in path Pi. Clearly, 
δ δP

k
P

k
i iv v( ) ( )≤ + 1 . In the first step, using δ P

P
i

i  slots, every node on the path transfers its data to its 
parent in the BFS tree. After the first step, the leaf v Pi

 already finishes its task in this round and 
has no data from the current snapshot. In the second step, using δ P

P
i

i
−1  slots, the current snapshot 

data will move up one more level along the path in a BFS tree. Repeat these steps until all data 
along this path reaches the sink. It is easy to show that the total number of time slots used by the 

above procedure is 
k

P

k
P

i

i

=
∑

1

δ . Because δk
P

i
i ≤ ∆ , 

k

P

k
P

i i

i

i P
=

∑ ≤ ×
1

| |

δ ∆ .

Figure 1.14 shows an example in which 
k

P

k
P

i

i

=
∑

1

δ  is much smaller than Δi × |Pi|. Again, we have 

n sensors and the sink distributed on a line P as shown in the figure. Assume that R = r. On the 
left side, there are log n nodes close to each other, thus their δ(vi) = log n except for δ(vn−log n+1) = 
log n + 1. On the right side, every node has δ(vi) = 3. Thus, Δ = Δi = log n + 1 and Δi × |Pi| = Θ(n 
log n). In addition, δk

P n= +log 1 for k = n − log n + 1,…, n and δk
P = 3  for k = 3,…, n − log n, 

1vnv n log n + 1v

n log nv
r

log n
rrrrrrr

n  log nr s

Figure 1.14 Illustration of the advantage of a new path scheduling. Here, R = r.
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δ2 2P = , and δ1 1P = . Therefore, 
k

P

k
P n n n n n

=
∑ = + + − − =

1

1 3 3δ (log )log ( log ) ( )Θ . It is obvious that 

k

P

k
P n

=
∑ =

1

δ Θ( )  is smaller than Δi × |Pi| = Θ(n log n) in order.

Using the new path scheduling analysis described above, we now derive a tight lower bound for 
our BFS tree-based method. Recall that our method transfers data based on branches in the BFS 
tree T. Given T, there are c paths Pi and c branches Bi as shown in Figure 1.10a and b. Then, the 
total number of time slots used by Algorithm 1 with the new path scheduling is at most

 i

c

k P B

P

k
P

i i

i

i

= = − +
∑ ∑

1 1

δ .

 

It is clear that this number is much smaller than 
i

c

i iB
=

∑ ×( )
1

∆  from a previous analysis. 

Notice that for path Pi our algorithm (lines 3 and 4 in Algorithm 1) will terminate the transmis-
sion until branch Bi does not have data for the current snapshot and switches to the next path 
Pi+1. Thus, the index of k is only from |Pi| to |Pi| − |Bi| + 1. Therefore, the capacity achieved by our 
algorithm is at least

 

W

n

k
P

k P B

P

i

c
i

i i

i

δ
= − +=
∑∑

11
.

 

Let ∆** = = − +=
∑∑ δk

P

k P B

P

i

c
i

i i

i

n
11 , which can be derived given the BFS tree. We now have a new lower 

bound of collection capacity as W
∆**  [26,27]. Here, Δ** is a kind of weighted average of the maxi-

mum interference among paths Pi and branches Bi in the BFS tree. We then have the following 
relationship:

 n ≥ ≥ ≥ ≥∆ ∆ ∆! ** 1, 

among the maximum interference number Δ in the whole graph, the maximum interference 
number !∆  in the paths/branches of the BFS tree, and the “average” maximum interference Δ** in 
the paths/branches of the BFS tree. These three interference numbers can be different from each 
other in order.

Now we introduce a new greedy-based scheduling algorithm inspired by Bonifaci et al. [32] 
and show that it can achieve a nice approximation ratio and lead to another tighter lower bound 
of collection capacity. The scheduling algorithm still uses the BFS tree as the collection tree. All 
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messages will be sent along the branch toward the sink s. For n messages from one snapshot, it 
works as follows. In every time slot, it sends each message along the BFS tree from the current 
node to its parent, without creating interference with any higher-priority message. The priority ρi 
of each packet pi is defined as 1

l vi( )
. It is clear that packets originating from the children of the 

sink have the highest priority ρi = 1, whereas packets originating from other nodes have lower priority 
ρi < 1. For two packets with the same priority (on the same level in the BFS tree), ties can be broken 
arbitrarily. Given a schedule, let v j

τ  be the node of packet pj in the end of time slot τ. The detailed 
greedy algorithm (Algorithm 2) is given in Figure 1.15.

Now we analyze the capacity achieved by this greedy data collection method. Before present-
ing the analysis, we first introduce some new notations. For two nodes vi and vj, h(vi, vj) denotes 
the shortest hop number from vi and vj in graph G. The delay of packet pj is defined as the time 
until it reaches the sink s, that is, D t v sj j= ⋅ =min{ : }τ τ .

Let λi be the minimal number of hops that a packet needs to be forwarded from node vi before 
a new packet at vi can be safely forwarded along the BFS tree. So λi = max{l|∃vj, h(vi, vj) = l and 
transmission from vi to par(vi) interferes with transmission from vj to par(vi)} + 1. Here, par(vi) is 
the parent of vi in T (see Figure 1.16 for illustration). Here, λi = 4 for vi. We define λ = maxi{λi}. 
Both λ and λi are integers (hop counts). In addition, we can prove λ ≥ λ* as follows.

Algorithm 2 Greedy Scheduling on BFS Tree

Input: BFS tree T rooted at s.
1: Compute the priority ρi = 1/l(υi) of each message pi.
2: for each snapshot do
3: while ∃pj such that υτ

j  ≠ s do
4: for all such pi in decreasing order of priority ρi do
5:  if sending pi from node υτ

j  will not create interference with any higher-priority messages that are 
already scheduled for this slot then

6: node υτ
j sends pi to its parent par(υτ

j) in T.
7: end if
8: end for
9: τ = τ + 1.

10: end while
11: end for

Figure 1.15 Greedy scheduling on a BFS tree.

vj

vi

iλ

Figure 1.16 Illustration of the definitions of λi.
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Lemma 8

In the general graph model, λ ≥ λ* [27].

Proof

Let vk be the node inside critical region with the largest level. We now consider two cases.

Case 1: If there is a node outside the critical region, as shown in Figure 1.13a, the transmission 
from vs to vk should interfere with the transmission from vq to s. Thus, in view of vs, its λs ≥ 
l* + 1 = λ*. Therefore, λ ≥ λ*.

Case 2: If all nodes are inside the critical region, again consider the vk with the largest level. 
Then, λ = λk = l(vk) + 1 > l(vk) = λ*.

Consequently, we conclude that λ ≥ λ*.

Packet pj is said to be blocked in time slot τ if, in time slot τ, pj is not sent out. We define the 
following blocking relation in our greedy algorithm schedule: pk ≺  pj if in the last time slot in 
which pj is blocked by the transmission of higher priority packets in that time slot, pk is the one 
closest to pj in terms of hops among these packets (ties broken arbitrarily). The blocking relation 
induces a directed blocking tree TD in which nodes are all message pi and edge (pk, pj) representing 
pk ≺  pj. The root pr of the tree TD is a message with the highest priority (originating from a child 
of s), which is never blocked. Let P(j) the path in TD from pr to pj and h(j) be the hop count of P(j). 
We then derive an upper bound on the delay Dj of packet pj in the greedy algorithm.

Lemma 9

For each packet pj in the snapshot [27], its delay

 
D t l vj i

p P ji

≤ ⋅
∈
∑ min{ ( ), }

( )

λ .
 

Proof

We prove this lemma by induction on h( j). For any packet pj, if h( j) = 0, which means pj is the 
root pr of TD, it will not be blocked. So, Dj ≤ t · l(vj). Then, consider the right side of the inequation 
t l v t l vi j

p P ji

⋅ = ⋅
∈
∑ min{ ( ), } min{ ( ), }

( )

λ λ . Because pj is the packet with the highest priority, l(vj) = 1 

and l(vj) ≤ λ. Thus, t l v t l vi j
p P ji

⋅ = ⋅
∈
∑ min{ ( ), } ( )

( )

λ  and the claim in this lemma holds for the case 

in which h( j) = 0.
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If h( j) > 0, that is, pj ≠ pr, let τ be the last time slot in which pj is blocked by packet pk, that 
is, pk ≺  pj. Notice that t h v s D tk k⋅ ( ) ≤ − ⋅τ τ, , otherwise pk would not reach s by time Dk. Also, 
h v vj k

τ τ λ,( ) ≤ − 1  because after pk moves one hop, pj is safe to move. From time slot τ + 1, pj may be 
forwarded toward s over one hop in each time slot, and reach s at the earliest time slot,

 D t h v s t h v s h v vj j k j k≤ ⋅ + + ( )⎡
⎣

⎤
⎦ ≤ ⋅ + + ( ) + ( )τ ττ τ τ τ1 1, , ,⎡⎡

⎣
⎤
⎦  

 ≤ t · (τ + 1) + Dk − t · τ + t · (λ − 1) = Dk + t · λ.

On the other hand, Dj ≤ Dk + t · l(vj) because after pk reaches the sink s, pj needs at most l(vj) to 
reach the sink. Consequently, Dj ≤ Dk + t · min{l(vi), λ}. This completes our proof.

Lemma 10

The data collection capacity of our greedy algorithm [27] is at least λ
λ
*

*
W
∆

.

Proof

Let pj be the packet having a maximum of Dj. By Lemma 9 and Lemma 8 (λ ≥ λ*),

 

D t l v t l vj

p P j

i

p P j

i

i i

≤ ≤
∈ ∈
∑ ∑

( ) ( )

min{ ( ), } min{ ( ),λ λ
λ* λλ*}

 

 

≤ + +
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∈ ∉
∑ ∑λ

λ*
*

* *

t l v l
v D s l

i

v D s li i( , ) ( , )

( ) ( )1 == =∑λ
λ

λ λ
λ* *

*t nt
i

i* ∆

 

Thus, the capacity achieved by our greedy algorithm is at least nb
D

W
j

= λ
λ
*

*∆
.

In summary, we show that under the protocol and general graph models, the data collection 
capacity for arbitrary sensor networks has the following bounds:

Theorem 7

Under the protocol and general graph models [27], the data collection capacity for arbitrary sensor 

networks is at least λ
λ
*

*
W
∆

 and at most W
∆*

.
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Here, λ* describes the interference around the sink s, whereas λ describes the interference around 

a node vi. Because λ ≥ λ*, λ
λ
*

≥ 1. For the disk graph model, λ
λ
*  is a constant. However, for the 

general graph model, it may not be. Thus, there is still a gap between the lower and upper bounds 
(such an example is given in Figure 1.14). We leave finding tighter bounds to close the gap for 
future works. For two examples in Figure 1.12, the greedy method matches the optimal solutions 
in order. For the straight-line topology in Figure 1.12a, λ = λ* = n and Δ* = Θ(n). Thus, the capac-

ity λ
λ
*

*
W W

n∆
= ⎛

⎝⎜
⎞
⎠⎟Θ  matches the upper bound. For the star topology in Figure 1.12b, λ = λ* = 1 

and Δ* = 1. In this case, λ
λ
*

*
W n
∆

= Θ( )  also matches the upper bound. Compared with the branch 
scheduling method, the greedy method can achieve much better capacity in practice because it 
allows packet transmissions among multiple branches of the BFS tree in the same time slot.

Compared with the lower bound of λ
λ
*

*
W
∆

, which we derive from greedy scheduling on the 

BFS tree, this lower bound of W
∆** , which we derive from branch scheduling on the BFS tree, 

may be smaller in some cases. Consider the example in Figure 1.14, λ
λ
*

*
W W

n∆
= ⎛

⎝⎜
⎞
⎠⎟

Θ
log

, whereas 
W W W
∆ ∆** **= = Θ( ). However, the reason is mainly due to the rough relaxation in our capacity 
analysis of greedy scheduling.

Finally, the bounds of collection capacity could be revised as the following:

Theorem 8

Under the protocol and general graph models [27], data collection capacity for arbitrary sensor 

networks is at least min ,λ
λ
*

* **
W W
∆ ∆

⎧
⎨
⎩

⎫
⎬
⎭

 and at most 
W
∆* .

1.3.3 Data Collection under the Physical and Generalized Physical Models
Similar to the random network part, we can also consider data collection under a physical model 
or a generalized physical model instead of a protocol model for arbitrary networks.

1.3.3.1 Data Collection under the Physical Model

Chen et al. [27] proved the following theorem for data collection in arbitrary WSNs under the 
physical model.

Theorem 9

Under the physical and disk graph models [27], the data collection capacity for arbitrary WSNs 
is Θ(W ).

The basic idea of their proof is as follows. To give an upper bound on the capacity of data col-
lection, an artificial transmission range r0 and an artificial interference range R0 are defined, such 
that (1) the receiving node vj of a sender vi is within distance r0, and (2) a transmitting node vk 



34 ◾ Wireless Sensor Networks

will cause interference at node vj within distance R0. That is, if there is any interference among 
the nodes in the protocol model with these artificial ranges, there is also interference among them 
in the physical model. By artificially setting r0 and R0 (which are both constants), we convert the 
physical model into a protocol model. Using previous proofs in protocol model, it is straightfor-
ward to show that the upper bound on the capacity under the disk graph model is bounded by 
Θ(W ). Similarly, to give a lower bound on the capacity of data collection, an artificial transmis-
sion range r1 and an artificial interference range R1 are defined, such that, when all simultaneously 
transmitting nodes are separated by a distance R1, and the receiving nodes of a transmitting node 
is within r1, the SINR of every receiving node is at least η. In other words, if there is no interfer-
ence among nodes in the protocol model with artificial ranges r1 and R1, there is no interference 
among the nodes in the physical model as well. Thus, we can convert the physical model into a 
protocol model. Using previous collection algorithms for the protocol model, it can be shown that 
the lower bound Θ(W ) on the capacity of data collection under the disk graph model is achievable.

1.3.3.2 Data Collection under the Generalized Physical Model

For the capacity of data collection under a generalized physical model, we can derive an upper 
bound by considering the congestion near the sink node. In particular, we can prove that whatever 
scheduling scheme is implemented, the total transmission rate of all the incoming links at the sink 
node is upper bounded by some value. As a bottleneck, the capacity of the whole network is always 
bounded by that value, as stated in the following theorem.

Theorem 10

Under the generalized physical and general graph models [27], data collection capacity for arbi-
trary sensor networks is at most

 maxi(Wis) + W · log2 n. 

The first part of this upper bound depends on the rate of the shortest incoming link 
at the sink, whereas the second part depends on the total number of nodes. Notice that 

max log( )i isW W P
N

≤ ⋅ +⎛
⎝⎜

⎞
⎠⎟2

0
1 . Thus, which part of the bound plays an important role depends 

on the relationship between n and 1
0

+ P
N

. When the network is a regular grid or a random 

homogeneous topology, we have maxi(Wis) + O(W log n). Therefore, the total rate of all incoming 
links at sink node s is at most O((log n)W ). The detailed proof of this theorem is similar to the one 
for Lemma 4 in Section 1.2.4.2, and it is true for any general graph. A lower bound of data collec-
tion capacity in this model is still open.

1.4 Conclusion
In this chapter, we investigate the theoretical limitations of data collection in terms of capacity 
for both random and arbitrary WSNs under different communication models. Table 1.1 briefly 
summarizes all completed work.
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There are other advanced techniques, which can be applied in the data collection process to 
further improve capacity, such as using multiradios to reduce interference [18], using data aggre-
gation to merge data packets [22,23,33], or using compressive data gathering to compress data 
packets [18,19]. For example, if each sensor can aggregate its received data (multiple packets) into 
a single packet, the following theorem can be proved, showing improved data rate and capacity for 
random networks over Theorem 1.

Theorem 11

Under the protocol model [22,23], the delay rate Γ and the capacity C of data aggregation in ran-

dom sensor networks with a single sink are Θ n nWlog( )  and Θ n
n

W
log

⎛
⎝⎜

⎞
⎠⎟

, respectively.

Notice that for data collection, the delay rate and the capacity are in the same order (Theorem 1), 
that is, pipelining can improve only a constant factor of the data rate. However, for data aggrega-
tion, it is very interesting to see that pipelining can increase the data rate in order.

Finally, all results presented in this chapter focus on how fast the data collection can be per-
formed under the existence of interferences among sensors. However, in practice, there are also 
other metrics that should be considered for data collection in WSNs, such as total energy consump-
tion [33], message complexity [33], load balancing among sensors, or possible retransmissions [21]. 
Readers are encouraged to check relevant references in the literature.

Acknowledgments
The author is grateful to his PhD students (Siyuan Chen and Minsu Huang) and colleagues 
(Xiang-Yang Li, Shaojie Tang, and Xinghua Shi) for working together on this research topic. This 
work was supported in part by the U.S. National Science Foundation under grants CNS-0915331 
and CNS-1050398.

References
 1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks. IEEE 

Communications Magazine 40:102–114, 2002.
 2. C. Wang, C. Jiang, X.-Y. Li, S. Tang, Y. He, X. Mao, and Y. Liu. Scaling laws of multicast capacity for 

power-constrained wireless networks under Gaussian channel model. IEEE Transactions on Computers 
61(5):713–725, 2012.

 3. A. Agarwal and P. R. Kumar. Capacity bounds for ad hoc and hybrid wireless networks. ACM 
SIGCOMM Computer Communication Review 34(3):71–81, 2004.

 4. P. Gupta and P. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory 
46(2):388–404, 2000.

 5. M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc wireless networks. In Proceedings 
of IEEE INFOCOM, 2001.



Data Collection in Wireless Sensor Networks ◾ 37

 6. B. Liu, P. Thiran, and D. Towsley. Capacity of a wireless ad hoc network with infrastructure. In 
Proceedings of ACM MobiHoc ’07, 2007.

 7. X.-Y. Li, S. Tang, and O. Frieder. Multicast capacity for large scale wireless ad hoc networks. In 
Proceedings of ACM MobiCom, 2007.

 8. X. Mao, X.-Y. Li, and S. Tang. Multicast capacity for hybrid wireless networks. In Proceedings of ACM 
MobiHoc ’08, 2008.

 9. S. Shakkottai, X. Liu, and R. Srikant. The multicast capacity of large multihop wireless networks. In 
Proceedings of ACM MobiHoc ’07, 2007.

 10. A. Keshavarz-Haddad, V. Ribeiro, and R. Riedi. Broadcast capacity in multihop wireless networks. In 
Proceedings of ACM MobiCom, 2006.

 11. B. Tavli. Broadcast capacity of wireless networks. IEEE Communications Letters 10:68–69, 2006.
 12. E. J. Duarte-Melo and M. Liu. Data-gathering wireless sensor networks: Organization and capacity. 

Computer Networks 43:519–537, 2003.
 13. M. Liu, D. L. Neuhoff, D. Marco, and E. J. Duarte-Melo. On the many-to-one transport capacity of a 

dense wireless sensor network and the compressibility of its data. In Proceedings of ACM IPSN, 2003.
 14. H. El Gamal. On the scaling laws of dense wireless sensor networks: The data gathering channel. IEEE 

Transactions on Information Theory 51(3):1229–1234, 2005.
 15. R. J. Barton and R. Zheng. Order-optimal data aggregation in wireless sensor networks using coopera-

tive time-reversal communication. In Proceedings of the Annual Conference on Information Sciences and 
Systems, 2006.

 16. R. Zheng and R. J. Barton. Toward optimal data aggregation in random wireless sensor networks. In 
Proceedings of IEEE INFOCOM, 2007.

 17. B. Liu, D. Towsley, and A. Swami. Data gathering capacity of large scale multihop wireless networks. 
In Proceedings of IEEE MASS, 2008.

 18. S. Ji, Y. Li, and X. Jia. Capacity of dual-radio multi-channel wireless sensor networks for continuous 
data collection. In Proceedings of IEEE INFOCOM, 2011.

 19. S. Ji, R. Beyah, and Y. Li. Continuous data collection capacity of wireless sensor networks under physi-
cal interference model. In Proceedings of IEEE MASS 2011, 2011.

 20. S. Ji and Z. Cai. Distributed data collection and its capacity in asynchronous wireless sensor networks. 
In Proceedings of IEEE INFOCOM, 2012.

 21. S. Ji, R. Beyah, and Z. Cai. Snapshot/continuous data collection capacity for large-scale probabilistic 
wireless sensor networks. In Proceedings of IEEE INFOCOM, 2012.

 22. S. Chen, Y. Wang, X.-Y. Li, and X. Shi. Order-optimal data collection in wireless sensor networks: 
Delay and capacity. In Proceedings of 6th Annual IEEE Communications Society Conference on Sensor, 
Mesh, and Ad Hoc Communications and Networks (SECON 2009), 2009.

 23. S. Chen, Y. Wang, X.-Y. Li, and X. Shi. Capacity of data collection in randomly-deployed wireless sen-
sor networks. ACM Springer Wireless Networks 17(2):305–318, 2011.

 24. S. Chen, Y. Wang, X.-Y. Li, and X. Shi. Data collection capacity of random-deployed wireless sensor 
networks. In Proceedings of IEEE Global Telecommunications Conference (Globecom 2009), 2009.

 25. S. Chen and Y. Wang. Data collection capacity of random-deployed wireless sensor networks under 
physical models. Tsinghua Science and Technology 17(5):485–498, 2012.

 26. S. Chen, S. Tang, M. Huang, and Y. Wang. Capacity of data collection in arbitrary wireless sensor 
networks. In Proceedings of IEEE 29th Conference on Computer Communications (INFOCOM 2010), 
Mini-Conference, 2010.

 27. S. Chen, M. Huang, S. Tang, and Y. Wang. Capacity of data collection in arbitrary wireless sensor 
networks. IEEE Transactions on Parallel and Distributed Systems 23(1):52–60, 2012.

 28. C. Wang, X.-Y. Li, C. Jiang, and S. Tang. General capacity scaling of wireless networks. In Proceedings 
of IEEE INFOCOM, 2011.

 29. S. R. Kulkarni and P. Viswanath. A deterministic approach to throughput scaling in wireless networks. 
IEEE Transactions on Information Theory 50(6):1041–1049, 2004.

 30. S. Rao. The m balls and n bins problem. Lecture Note for Lecture 11, CS270, University of California, 
Berkeley, 2003.


	
	




