Web of Science

Search History My Tools ▼ Search Search Results **Marked List** 310 of 723 **□** Save to EndNote online Add to Marked List **▼ Look Up Full Text**

Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies

By: Salam, MA (Salam, M. Abdel) View ResearcherID and ORCID

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY

Volume: 10 Issue: 4 Pages: 677-688 DOI: 10.1007/s13762-012-0127-6

Published: JUL 2013 **View Journal Impact**

Abstract

Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-secondorder, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes' surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.

Keywords

Author Keywords: Adsorption; Competition; Enthalpy; Mechanism; Toxic metals

KeyWords Plus: ADSORPTION; SORPTION; WATER; PEAT; NANOMATERIALS; EQUILIBRIUM;

ADSORBENTS: POLLUTANTS: MECHANISM

Author Information

Reprint Address: Salam, MA (reprint author)

King Abdulaziz Univ, Dept Chem, Fac Sci, POB 80200, Jeddah 21589, Saudi Arabia.

Organization-Enhanced Name(s)

King Abdulaziz University

Addresses:

[1] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia

Organization-Enhanced Name(s)

King Abdulaziz University

E-mail Addresses: masalam16@hotmail.com

Publisher

Citation Network

Sign In -

26 Times Cited

38 Cited References

View Related Records

Create Citation Alert

(data from Web of Science Core Collection)

Help

English -

All Times Cited Counts

26 in All Databases

26 in Web of Science Core Collection

3 in BIOSIS Citation Index

1 in Chinese Science Citation Database

0 in Data Citation Index

0 in Russian Science Citation Index

0 in SciELO Citation Index

Usage Count

Last 180 Days: 0 Since 2013: 71

Learn more

Most Recent Citation

Ojemaye, Mike O. Adsorption of Cu2+ from aqueous solution by a novel material; azomethine functionalized magnetic nanoparticles SEPARATION AND PURIFICATION TECHNOLOGY, AUG 7 2017.

View All

This record is from: Web of Science Core Collection - Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.

SPRINGER, 233 SPRING ST, NEW YORK, NY 10013 USA

Categories / Classification

Research Areas: Environmental Sciences & Ecology Web of Science Categories: Environmental Sciences

Document Information

Document Type: Article Language: English

Accession Number: WOS:000319437200006

ISSN: 1735-1472

Journal Information

Impact Factor: Journal Citation Reports

Other Information IDS Number: 151CC

Cited References in Web of Science Core Collection: 38 Times Cited in Web of Science Core Collection: 26

310 of 723

© 2017 CLARIVATE ANALYTICS TERMS OF USE PRIVACY POLICY **FEEDBACK**