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    Most atoms, when they form ions, such as in a crystalline salt, achieve 

a closed shell configuration; either by losing their valence electrons 

(metallic ions) or building up an incomplete shell (negative ions). Such 

closed shell ions are therefore in 1S state, which is diamagnetic, non-

degenerate and generally does not give rise to interesting effects. 

However, the transitions and rare earth metals are exceptions to this rule 

because of their inner, incomplete 3d, 4d, 4f, 5f shells as free ions of these 

in general have paramagnetic, degenerate ground states which in crystals 

get split by the electric field. In a crystalline salt, such an ion finds itself 

surrounded by some regular arrangement of other ions and water 

molecules. Now one should consider the ion and its neighbors as a big 

molecule, and discuss their interaction in terms of covalent and other 

bonds. However, it has been found a good approximation to consider the 

neighbors as simply giving rise to an electrostatic potential, the crystalline 

field, which acts on the paramagnetic ion. This field combined with the 



spin-orbit coupling, splits the ground term into sequence of levels. Since 

1946, paramagnetic resonance had been used to study in great detail the 

lowest of these energy levels and their variation in an applied magnetic 

field. Consequently there is considerable interest in making accurate 

calculations of these levels. Comparisons between the calculated and the 

observed levels has then determined the magnitude of various parameters 

such as the strength of the crystalline field, and has also brought light to 

some refinements that are required in the quantum theory of atoms. The 

use of symmetry properties may lead to very broad general results, 

applicable to any free atom or ion, but in this thesis, we shall use group 

theory in a quite different role. Group theory is used here to help calculate 

particular matrix elements and the splittings as required. The energy levels 

are determined. In detail, this involved a long and complicated 

calculation, so we shall show how group theory is used to calculate the 

type of matrix elements that are required during calculation and which 

kind of splitting is at each stage [Heine, 1993]. 

    We focus mainly on the conducting fullerides, for which the 1996 

Nobel Prize for Chemistry has been won by Robert F. Curl Jr., Sir 



Harold W. Kroto, and Richard E. Smalley for their discovery of 

fullerene, in which atoms that are arranged in closed shells were found to 

have the structure of a truncated icosahedron C60 which can be derived 

from an icosahedron after the vertices have been cut off. The pattern of a 

European football (soccer ball) has exactly this structure, and the new 

allotrope of carbon was named Buckminsterfullerene after the architect R. 

Buckminster Fuller who designed geodesic domes in the 1960's 

[Levinovitz & Ringertz, 2001]. 

    Endohedral fullerenes are of great interest due to their diversity and 

plans for numerous applications. Because of the robust carbon cage and 

its large hollow interior, endohedral fullerenes represent a new class of 

technology relevant composites as they incorporate possible metallic and 

fullerene like properties [R. Klingeler, G. Kann, I. Wirth, S. Eisebitt, P. S. 

Bechthold, M. Neeb & W. Eberhardt, 2001]. In general, two possibilities 

for doping are offered; either inserting a foreign atom M inside the C60 

cage or replacing one or several carbon atoms in the C60 cage with atoms 

having different electronic structure. In the first case, M@ C60 endohedral 



super-molecule is obtained (Fig 1.1), while in the second case, the 

composition C59M is obtained by on-site doping [Forró & Mihály, 2001]. 

 

 
Fig 

1.1: 

Endohedral (left) and ‘on-site’ (right) doping of the fullerene molecule [Forró & 

Mihály, 2001]. 

 

    Endohedral fullerenes, where fullerenes encapsulate additional atoms, 

ions, or molecular species enclosed within their inner spheres, have been 

an object of fascination since the first Lanthanum C60 complex called 

La@C60 was discovered in 1985. The “@” sign in the name reflects the 

notion of a small molecule trapped inside a shell. The unique carbon cages 

have captivated scientists with their tantalizing properties and possibilities 

for application; they can stabilize reactive species inside the cage, can 

http://www.answers.com/topic/fullerene
http://www.answers.com/topic/lanthanum


serve as nondissociating salts in electrochemistry and offer other exciting 

properties. 

    Endohedral C60 molecules can be prepared by a “brute force” method, 

where ions of atoms are accelerated and implanted into the C60 cage. The 

ions should have just enough energy to open up the cage and enter. 

Endohedral molecules of M@ C60 with M = N, P, Li, Ca, Na, K, Rb were 

produced this way in small quantities [Forró & Mihály, 2001]. A 

Polonium atom was the largest dopant atom to embed the C60 fullerene, 

creating the endohedral molecule Po@C60 [Ohtaski & Ohno, 2006]. 

    For the quantum numbers which characterize the states, the atomic 

electrons can be described by eigenfunctions with the four quantum 

numbers n (principal quantum number), l (orbital quantum number), ml 

(magnetic quantum number) and ms (spin projection quantum number) 

[Haken, Wolf & Brewer, 2004]. 

    The magnetic dipole moment of an atom, m, referred to as the orbital 

magnetic moment, is the resultant of all orbital and spin magnetic 

moments, ml and ms respectively, of its electrons. The resultant magnetic 

moment, also known as exchange force, ties the atoms together. In a 



degenerate J-multiplet, which has a good total angular momentum 

quantum number L and a good spin quantum number S, if the atom is 

described in LS coupling, vector states are written in terms of the Quantum 

number MJ for the x, y and z components of the total angular momentum 

[McElhinny, 1973]. The unperturbed atomic states (eigenstates) can then 

be labeled by the total angular momentum (the total quantum number 

J=L+S) [Friedrich, 2006]. Spin moment is therefore largely determined 

by exchange interactions; an electrostatic many-body effect, caused by the 

Coulomb interaction between electrons [Bates & Bederson, 1990].  

    According to group theory, in the absence of external fields, we expect 

J to be a good quantum number and the degeneracy of the (2J + 1) states 

in the level to be absolute. Yet, when atomic spectra are observed, one 

often finds that the fine-structute lines split even further into hyperfine 

structure. Since group theory allows no such splitting from the electronic 

degrees of freedom, it must result from an additional degree of freedom, 

Pauli (1924) suggested that, if the nucleus had a spin, it could provide this. 

The extra structure is then associated with the new irreducible 

representations (IR) of the full rotation group based on the direct product 



of nuclear and electronic eigenfunctions. The energetic interaction which 

produces the splitting can be either electric or magnetic [Tinkham, 2003]. 

    The magnitude of the crystal field effect in rare earth ions is relatively 

small. This is due to their formation, which leaves the 4f inside the filled 

5s and 5d shells when the outermost 6s is removed. This means that they 

have a smaller radius and are partly shielded from external fields. These 

two factors mean that the transition metal ions are much more sensitive to 

the crystal field than the rare earths. Furthermore, the spin-orbit 

interaction is quite large because it varies with the atomic number. 

Therefore in treating the crystal field effects by perturbation theory, one 

must apply the spin-orbit interaction first. The spin-orbit interaction splits 

the gross structure of the free ions into fine structure terms defined by the 

quantum numbers (LSJ), denoted in the Russel-Saunders coupling as 

2S+1LJ. The crystal field then perturbs these states, shifting their energies 

slightly and causing new splittings. However the size of these shift are 

much smaller than the spin-orbit splittings and so the dopant ions are 

generally fairly similar to those of the free ions [Fox, 2006]. 



    Rare earth moments can be given by the use of Hund’s rules, which 

predict the spin and orbital moment as a function of the number of inner 

shell electrons [Skomski & Zhou, 2006]. This interaction should be 

analyzed by means of quantum theory which strongly concerns with spin-

spin interactions in the order of the atomic scale. Exchange interaction, 

which tends to align neighbor spins, is the appropriate treatment for 

analysis of many-electron systems, the f 2-electron system in this 

particular case. 

    Creating a magnetic field comes from two sources: 

The first is coming from the motion of electric charges such as currents 

changing the electric field into magnetic field. This “Maxwell’s” 

interaction is macroscopic, that is, it does not correspond to any 

characteristic length. Quantum mechanics links magnetism inextricably 

with the intrinsic angular momentum or "spin" of electrons. However, 

unlike classical angular momentum, which can take on any value, this 

second type of spin of an electron is a purely quantum number which can 

have only one of two values; "up" or "down” and atoms have a net 

magnetic moment, if they contain more spin-up electrons than spin-down 



electrons, or vice versa. This often happens if the atom contains partially 

filled electron shells [Forró & Mihály, 2001], [Judd & Lo, 2004]. 

    Rare earth elements, also known as the "4f" series, which can hold up 

to 14 electrons, become ferromagnetically ordered at lower temperatures, 

and almost have a ferromagnetic or antiferromagnetic ground state at 

sufficiently low temperatures. That is, below a certain temperature called 

the Curie temperature, the exchange interactions between the spins lead 

to two distinct phases in a solid depending on their sign, and the atomic 

magnetic moments tend to either line up in a common direction, giving a 

ferromagnetic phase, or form an array of spirals, yielding to an 

antiferromagnetic phase where alternate spins point in opposite directions 

[Coey & Sanvito, 2004]. 

    We are considering two systems; each is made of a rare earth ion 

enclosed within the cage-like truncated icosahedron. For an f orbital, there 

are seven (2×3+1=7) possible angular momentum states which are 

degenerate (of the same energy) under normal circumstances. Therefore, 

even though the angular momentum quantum number l is no longer a good 

quantum number, it still has a meaning; it tells the origin of a particular 

http://www.answers.com/topic/curie-temperature-1


atomic orbital [Haken, Wolf & Brewer, 2004]. The study of the exchange 

interactions of these interacting systems as they come close together is the 

foundation for the physics of this subject. For an endohedral fullerene, the 

crystalline electric field at a rare earth ion approximates to one possessing 

icosahedral symmetry. 

    Application of combinatorial methods with the IR of the icosahedral 

group I are made to the f-electron system by employing group 

representations that have no nontrivial invariant subspaces and 

applications. The effect of icosahedral field, a strong crystal field, on the 

f-orbital and how the symmetry of the crystal field can be used to write 

wave function of the f 2 system is discussed in this study. In order to 

develop a many electron theory of the exchange interactions within these 

ion pairs of the icosahedral symmetries, a many-body and group theoretic 

approach will be used to understand the system of f-electrons.  

    In the next chapter, the splittings of energy levels by the presence of 

strong crystal field is discussed in detail. Chapter 3 introduces the 

concepts of second quantization and perturbation theory. Many-body 



operators and the exchange interactions are derived in detail in chapter 4. 

Finally, a conclusion of the present work is presented in chapter 5. 

 


