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Abstact. In this paper, we develop a finite queueing model having 

single and batch service modes for telecommunication system, where 

two types of traffic, i.e. voice and data arrive in Poisson fashion. The 

server starts service only when N packets are accumulated in the 

system. The server performs service singly until there are C packets in 

the system. After then type 2 packets are discarded and all type 1 

packets are served in a batch. The arrival rates of packets depend upon 

the server’s status. The transient state probabilities of system states are 

obtained by solving a set of linear equations with the help of Laplace 

Transform technique. Performance indices such as average queue 

length, expected idle time, and expected busy period are determined. 

We also investigate the optimal value of threshold parameter N and C 

after which the server changes the mode of service in order to 

minimize the expected cost. The numerical illustrations are provided 

to visualize the effect of various parameters on system performance. 

Keywords: Bi-level, N-Policy, Integrated traffic, Priority, State-
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1. Introduction 

In the recent years, analytical tools based on queue-theoretic approaches 

are becoming of great importance in performance modelling of traffic 

control in congestion situations of complex communication networks. In 

packet-switched environment, buffering could be done at the input and 

output ports. In many real situations a pre-assigned number of packets 
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are accumulated in the input buffer before starting the transmission. In 

queueing theory, this is known as N-policy and plays a very important 

role for the performance prediction of communication problems. Several 

authors studied the characteristic of N-policy queues in different 

frameworks. In this direction, the contribution of Yadin and Naror
[1]
, 

Heyman
[2]
, Kella and Chaudhary

[3]
 are worth-mentioning. Boham and 

Mohanty
[4]
 gave transient solution of Markovian queue under (M, N) 

policy. Time dependent solution for discrete time M/M/1 queue was 

provided by Boham and Mohanty
[5]
. Lee et al.[6] considered batch arrival 

queue with N-policy. Choudhary
[7]
 analysed N-policy queue with general 

setup time. Artalejo
[8]
 showed some applications of stochastic 

decomposition properties for the queue size and waiting time distribution 

in M/G/1 queue with N-policy. Various optimal control policies were 

studied by Lillo and Martin
[9]
. Response time for general service time 

queue with Bernoulli feedback was investigated by Medhi
[10]

. Jain and 

Rakhee
[11]

 discussed a optimal N-policy for the state dependent M/Ek/1 

queue with server breakdown. Jain et al.[12] developed M/M/R machine 

interference model with balking, reneging, spares and two modes of 

failure by using birth-death process. Jain et al. (2004) gave a numerical 

solution for machine repair system with spares and reneging under N-

policy. Arumuganathan and Jeyakumar
[13]

 analysed a M
X
/ G(a, b)/1 

queueing system with multiple vacation, setup time with N-policy and 

closedown times. Choudhury and Madan
[14]

 considered a batch arrival 

queueing system, where the server provides two stages of heterogeneous 

service with a modified Bernoulli schedule under N-policy.  

In many situations, packets are served in batch with reduced rate 

when queue size become large. It reduces the delay and release the 

conjection. A comprehensive survey on bulk queues can be found in 

Neuts
[15]

 and Chaudhary and Templeton
[16]

. Expressions for probability 

density function (pdf) of the busy period for single server bulk queue 

were obtained by Kambo and Chaudhary
[17]

. Infinite markovian queue 

with two mode of service was studied by Raj and Manoharan
[18]

. Jain and 

Rakhee
[11]

 obtain explicit results for finite capacity queue with batch 

service of two type of traffic. They minimize expected cost by evaluating 

the optimal value of threshold to start the batch service. Ke
[19]

 considered 

a batch arrival queue under bi-level control policy. Optimal control of 

batch arrival and batch service queueing system under N-policy was 

discussed. Dshalalow et al.[20] obtained a bi-level hysteretic control 
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policy for a stochastic hybrid system with compound poisson input 

general batch service and two vacation modes.  

The present investigation suggests transient analysis of finite 

capacity Markovian queueing model under bi-level control policy. We 

consider two type of traffic (i.e., voice/data). Server turn on and serves 

one packet at a time when N-packets are accumulated in the system. If 

the number of packets in the system exceed the threshold value C, then it 

switches to batch service mode and serve all the type 1 packets in a batch 

whereas type 2 packets are lost. We obtain the set of algebraic linear 

equations by taking Laplace transform of differential difference 

equations governing the model. The set of equations is solved by 

Cramer’s rule and invert the solution by well known partial fraction 

technique to get the probabilities. The transient state queue size 

distribution and expected busy period, expected idle period have been 

obtained. Optimal value of N and C, namely N* and C* are computed by 

minimizing the cost function. Numerical illustration provides the validity 

of proposed model.  

The remainder of this paper is organized as follows: In Section 2, we 

give a detailed description of the model. In Section 3, we present queue 

size distribution which is useful in solving the model. System 

characteristics are given in Section 4. Cost analysis for obtaining the 

performance measures is presented in Section 5. Section 6 presents 

numerical results. Finally the conclusions of the paper are given in 

Section 7. 

2. Model Description 

We consider a Bi-level (N, C) policy for single server Poisson queue 

with two modes of service and finite capacity. For system modeling 

purpose, the following characteristics are assumed:  

The two types of packets originate according to Poisson distribution 

with state dependent arrival rates as: 
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where j = 1 and 2 denote the types 1 and 2 jobs respectively.   

The server follows (N, C) policy, i.e., server turns on when N (N ≥ 1) 

packets are accumulated and then serves the packets one by one with rate 

μ1 according to FIFO discipline upto a threshold queue level C. After 

reaching the size of queue as C, type 2 packets are lost and the server 

switches to bulk service mode and serves all the queued type 1 packets in 

a batch with reduced rate μb. We denote the server state as follows: 

(a) (0, n) server is idle and n packets in the queue where n = 0, 1,…., N – 1. 

(b) (1, n) server is on and n packets in the queue where n = 0, 1, …., C – 1. 

(c) (b, n) server is in batch mode and n packets in the queue where: 

n = C, C+1, …., K. 

The system state space are mutually exclusive. 

Denote  Λ0 = λ 0, 1 + λ 0, 2  

 Λ1 = λ 1, 1 + λ 1, 2  

 P0, n (t) Prob. that server is off and n packets are in the 

queue at time t 

 P1, n (t) Prob. that server is on and n packets are in the 

queue at time t  

3. The Analysis 

The Chapman-Kolmogorov equations governing the model are as 

follows: 
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Taking the Laplace transform of (1)–(9) and using the initial 

condition P0, 0 (t) = 1; Pi,j (t) =0; (i =0,1 and j=1,……K), we obtain 

(s + Λ0) P*0,0 (s) – 1 = μ1 P*1, 1 (s) + μ2 )(*

,1

1

sP
i

K

Ci

∑
+=

                         (10) 

(s + Λ0) P*0,n (s) = Λ0 P*0, n -1 (s)   1 ≤ n ≤ N–1                                 (11) 

(s + Λ1 + μ 1) P*1,1 (s) = μ1 P*1, 2 (s)                                                 (12) 

(s + Λ1 + μ 1) P*1,n (s) = Λ1 P*1, n -1 (s) + μ1 P*1, n+1 (s), 2 ≤ n ≤ N–1          (13) 

(s + Λ1 + μ 1) P*1,N (s) = Λ0 P*0, N -1 (s) + Λ1 P*1, N -1 (s) + μ1 P*1, N+1 (s)     (14) 

(s + Λ1 + μ 1) P*1,n (s) = Λ1 P*1, n -1 (s) + μ1 P*1, n+1 (s), N+2 ≤ n ≤ C–1      (15) 

(s + λb, 1 + μ 1) P*1,C (s) = Λ1 P*1, C -1 (s)              (16) 

(s + λb, 1 + μ 2) P*1, n (s) = λb, 1 P*1, n -1 (s), C+1 ≤ n ≤ K–1           (17) 

(s + μ 2) P*1, K (s) = λb, 1 P*1, K -1 (s)                (18) 
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The equations (10)-(18) can be written in matrix form as  

 

     A(s) P*(s) =P(0)                               (19) 

 

where  P*(s) =[P0,0(s), P0,1(s) P0,2(s)…P0,N-1(s), P1,1(s),… P1,C-1(s), 

P1,C(s), P1,C+1(s), …P1,K(s)]                                                                    (20) 

  

and P*(0) =[P0,0(0), P0,1(0) P0,2(0)…P0,N-1(0), P1,1(0),… P1,C-1(0), 

P1,C(0), P1,C+1(0), …P1,K(0)]                                                                   (21) 

Where: 

A(s) is an (N+K)×(N+K) matrix  (22) 

As given in Fig. 1. 

By using Cramer’s rule, we can easily solve equation (19) and get 

Pi,j(s) as 

 

P
*
i, j

)(

)(

sA

sA j
=   ; i=0, 1; j=0, 1, 2, …, K  (23) 

Here )(sA  is a determinant of the matrix A(s) and )(sjA  is the 

determinant of matrix obtained by replacing j
th
 column of matrix A(s) by 

initial vector P(0) = [1, 0, 0,…0]
T
. 

)(sA ( ) ( ){ }⎥
⎦

⎤
⎢
⎣

⎡
+++⎥

⎦

⎤
⎢
⎣

⎡
+= ∏∏

=

+
+

+
+

=

j

k

kjkjkjkj

i

k

k rrsrrsrss

1

2

1

  (24) 

Then 

( ) ( ){ }⎥
⎦

⎤
⎢
⎣

⎡
+++⎥

⎦

⎤
⎢
⎣

⎡
+

=

∏∏
=

+
+

+
+

=

j

k

kjkjkjkj

i

k

k

j
ji

rrsrrsrss

s

sP

1

2

1

,
*

)(
)(

A  (25) 

( )∑∑
= +

+
+

+
= +++

+

+

+

+=

j

1l lililili

2

ll
i

1l l

l0
j,i

*

rrsrrs

csb

rs

a

s

a
)s(P           (26) 



Transient Analysis of a Telecommunication System… 83 
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Taking the inverse Laplace transform of equation (26), we obtain 
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where ul and vl denote the real and imaginary part of complex eigen value 

ri+l and a0, al, bl, cl are all real numbers. 

4. System Characteristics 

We obtain various performance indices for N-policy controllable 

finite capacity queue with the help of transient state probabilities derived 

in previous section as follows: 

The expected number of packets in the system at any instance t is 

obtained by 
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The expected number of packets in the queue at any instance t is 

given by (i.e., average queue length) 
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The probability that the server being idle at time t, is  
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Using the memoryless property of the Poisson Process, the length of 

the idle period is sum of N exponential random variables, each having 

mean rate 1/Λ0 so that 
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The expected busy cycle, is the sum of expected idle period and expected 

busy period, hence 

E[B(t)]=E[I(t)]+E[T(t)] (38)  
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5. Cost Analysis 

To construct the cost function for proposed model, we assume the 

following cost components: 

C0 Setup cost 

C1  Holding cost of one job in the system either server is idle  

or in single service or in batch service mode 

C2 Cost incurred when server is in single service mode 

C3 Cost incurred when server is in batch service mode 

C4 Cost per unit time for turning the server on 

C5 Cost per unit time for turning the server off 

The expected cost at time t is given by 
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We have solved the transient state probabilities by using the numerical 

method, therefore it is very difficult to get exact results for expected total 

cost function and optimal value of N and C, which minimize the expected 

total cost function, which is highly non-linear. Thus we apply heuristic 

approach based on discrete allocation to achieve optimal value of N and C. 

6. Numerical Results 

To check the optimal values of threshold parameters N and C in 

order to minimize the expected cost, we provide numerical results using 

MATLAB. We compute the expected number of packets in the queue 

EQ(t) and system ES(t) and expected cost as summarized in the graphs. 

Figures 1 and 2 display the EQ(t) and ES(t) for different and same 

values of λ0, λ1, λb respectively. Other parameters are fixed as μ1 = 0.35, 

μb = 0.2, C = 7 and N = 3 K = 10,  C0 = 500 C1 = 2, C2 = 5, C3 = 1000, C4 

= 500, C5 = 200. It is observed from the figures that queue length 

increases with the increase in λ1 and time (t) but after a long time 

becomes steady.  
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Fig. 1. Expected number of packets in the queue. 

Fig. 2. Expected number of packets in the system. 
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Effect of N and C is shown in Fig. 3 and 4 respectively. The optimal 

value of N and C are shown by tick marks in the figures, where the 

expected cost (EC(t)) is minimum. 
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From these figures optimal value of N and C for minimum value of 

EC(t) are obtained and summarized in Table 1. 

                      Table 1. Optimal value of N and C for minimum value of EC(t). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion 

A finite capacity queueing model having single and batch service 

modes for telecommunication system was developed. The transient 

solution of this finite capacity, N-policy queue with two type of service 

modes has been obtained and the average queue length, expected idle 

period and expected busy period were derived. Optimal value of N and C 

are achieved by minimizing the cost function. 
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